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Effective correlation times in turbulent scalar transport
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The effective correlation times in turbulent transport of passive scalar fields in the presence of a large-scale
flow are investigated. For weak sweeping, the effective correlation times can be either enhanced or depleted
depending on the detailed form of the autocorrelation function of turbulence. Strong large-scale sweeping
always reduces the effective correlation times. This fact is exploited to derive explicit approximate formulas
for the effective diffusivities. These expressions are then compared with numerical simulations of the Fokker-
Planck equation for the passive scalar fi¢§1063-651X97)08711-4

PACS numbes): 47.27.Qb, 47.27.Gs

INTRODUCTION fluctuating random parti, whose statistical properties are
prescribed.

Turbulent transport of passive fields is of major impor- The above decomposition, which is standard, for instance,
tance in various domains ranging from astrophysics to geoin the framework of mesoscale meteorolddy, implies that
physics. The main quantity of interest is typically the rate athe small-scale eddies remain stationary while a slowly
which turbulence transports the scalar, e.g., a pollutant. Fomodification of the large-scale component occurs. In the
times large compared to those characteristic of the turbuleriéalm of geophysics, this is a quite common feature, for ex-
field, transport is diffusive and is characterized by effectiveample, inside the planetary boundary layeBL) [5], a thin
diffusion coefficientgwhich are actually a second-order ten- atmospheric layer near the ground, where the airflow is
son. For high-Reynolds-number incompressible flow, thesStrongly driven by sink- or ;ource—forcing terms ari_sing from
turbulent rates of transport typically greatly exceed the corfh€ bottom boundary. In this atmospheric region, it then fol-
responding molecular rates. The molecular diffusiBty is lows that dynamical effects_ induced by slowly variations of
thus much smaller than the effective diffusivity and can begb?en;ggrg)rgﬂ;ﬁgﬁle velocity can be neglected as a reason-
neglected. An exact form_ula qbtallng_d by Ta.\y[&ﬂ. allows Inside the PBL, the response of turbulent flow to small-
one to express the effective diffusivities as time integrals of

Lagrangian correlations. The problem is that the relation be§cale(d|53|pat|ve forcing (€.g,, due to the orographgs well

: . . as, for example, radiativigriving) forcing arising from solar
tween Lag'r angian and Eglerlan averages fpr generic ,turb'“ﬁ;ldiation reflected by the Earth must be accounted for. With
lent flows is highly complicated. An exception is provided \oqpect 1 the former, the role of small-scale orography fea-
by the flows having short correlation times. For randomyres consist§6] in extracting momentum from the atmo-
flows &-correlated in time, Lagrangian and Eulerian averagegpnere, primarily either through form drag, due to differen-
indeed coincide and the effective diffusivities can be deteryjg| pressure across the object, or through gravity wave drag,
mined exactly. The resulting expression depends on the ety which internal gravity waves initiated by flow over the
ergy spectrum only. For realistic flows, having finite corre-mountains propagate vertically and may extract momentum
lation times, the effective diffusivities are generally from the flow far aloft the surface forcing.
dependent on all turbulence characteristics and no general In general, such a type of surface forcing is not invariant
approach for their calculations is known. Given the statisticaunder a Galilean transformation. As a consequence, such an
properties of the turbulence, one would like to be able tanvariance does not hold for the airflow inside the PBL.
calculate, at least approximately, the effective diffusivities.From this point of view, it may be interesting to investigate
From the point of view of statistical field theory, this prob- the effect of a slowly varying large-scale flow on the effec-
lem is equivalent to studying the infrared behavior of thetive coefficients. In fact, for small-scale velocity field not
mass operator appearing in the equation for the averagevariant under Galilean transformations, the large-scale flow
Green's function. A fully consistent statistical theory, the not only contributes(trivially) to a drift but it can act to
direct interaction approximatior(DIA), was developed in modify the correlation times of the smaller-scale velocity
Ref. [2]. The idea essentially consists of neglecting anyfield.
renormalization of the vertices. The DIA equation for the The first remark we shall exploit is that strong sweeping
passive scalar problem was investigated in R&f.The qua- reduces the effective correlation times of the advecting tur-
dratic equation for the average Green'’s function was solvedulenceu. Let us indeed denote [y, the correlation length
numerically and the resulting numerical values of the effec-of u. It is physically quite evident that for times larger than
tive diffusivities were found to be in fairly good agreement Ry/U the regions ou sampled by the scalar are essentially

with the corresponding measured values. uncorrelated. This point can be analyzed in full detail by
Our aim here is to consider passive scalar transport in theonsidering the simple case of parallel flows, as done in Sec.
presence of a mean flow. The advecting velocity fielss [l A. On the other hand, from the results of R¢8], it is

thus made by a constagbr slowly varying part U and a  known that the DIA works better and better as the correlation
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time of the advecting flow reduces and becomes exact fopf Ofdefé_zteddy, wheretgqq=1/Uq anduy is the character-
flows &-correlated in time. We combine these two remarks toistic amplitude ofu. Furthermore, the advection Hy takes
derive explicit formulas for the effective diffusivities in the place on time©(e™%).

presence of a mean flow. These expressions are then com- |n the spirit of multiscale methodsee Ref[8]), in addi-
pared with numerical simulations of the original passive scatjon to thefast variablesx andt, let us introduceslow vari-
lar equation. ables asX=ex, T=¢%, andr=et. The prescription of the

The paper is organized as follows. In Sec. | an extensiofechnique is to treat the variables as independent. It follows
of the theory of the passive scalar field outlined in Réf.is  that

presented in order to deal with velocity fields that vary also

on large scales. The results obtained in that section are ap- dir>di+ €V, dp—>di+ed +e’ir, 2
plied in Sec. Il to the case of parallel flows. Different re-
gimes corresponding to weak and strong sweeping are inves- u—u(xt), U—U(X,T), €)

tigated concerning their effects on effective correlation o ]
times. The investigation is carried out both analytically andWwhered andV denote the derivatives with respect to fast and

in Sec. Ill, by numerical simulations performed on the Slow space variables, respectively. The solution is sought as
Fokker-Planck equation for the passive scalar field. In Sec@ perturbative series

IV the decorrelating effect associated with strong sweeping N T (0) 1)1 242)

is exploited to derive explicit formulas for the effective dif- OXEXTim)=0"+ed M+ e 0%+, )
fusivities. Explicit approximate formulas are then evaluatec\Nhere the functions™ dependa priori on both fast and

by a comparison with numerical simulations of the Fokker- | iabl . ; .
- . ) . . .B E 2 Eqg.(1
Planck equation for the passive scalar field. The final Secno'icc])t\:\;;i/r?gr;atgrﬁs hé\llri]r?gergggal %Sj\av:psdei(n\)/vg]tgbt;in(az ﬂinedr-

IS reserved fo_r gonclusions. _In the A_ppen_d|x the_renormal-archy of equations. The solutions of interest to us are those
ized perturbation theory leading to th@ect interaction ap- having the same periodicities as the velocity fiald.t).

F’mx”!“a“o.”a”‘?' to thgself—con&stent methdar finding the It can be easily checked that the equations at oedsnd
effective diffusivities is presented. 2 are

I. THE MULTISCALE APPROACH IN THE PRESENCE 3,00+ (v- @) 0D — D20V =— (v- V) §©

OF LARGE-SCALE VELOCITY FIELDS
_ _ —9.09 for O(e),
Multiscale techniquessee, e.g., Ref8]) have been used

in Ref.[9] to show that the large-scale dynamics of the sca- ®)
lar, in the presence of scale separation with respect to the 2) 2) 20(2)_ 0) 1)
small-scale advecting velocity field, is governed by an effec- 7+ (v-9) 07 —Dod"0' 7=~ 107 —(v- V)0

tive equation that is always diffusive. The calculation of the +D.V29®
effective diffusivity is reduced to the solution of one auxil-
iary equation. +2Dy(d- V)oY

In this section we generalize such results by considering

velocity fields varying also on | les. The goal is two- —9,6% for O(e?).
y fields varying also on large scales. The goal is two

fold: on the one hand to derive an effective equation govern- (6)
ing the scalar field dynamics on large scales and, on the other
hand, to obtain an equation for finding the effective diffusiv-Now we make use of the solvability conditions for E¢S)
ity. As we shall see, the effective diffusivity depends notand (6) (Fredholm alternativeand we exploit the fact that
only on the turbulent velocity fields but also on the large-the solution #(°) goes to zero on a fast time scdlee.,
scale componerit). Such a dependence, and the related ef9(2(x,t;X,T;7)=6(O(X,T;7); see[11] for detaild. The lin-
fects on the effective correlation times of turbulence, will beearity of Eq.(6) permits us to search for a solution in the

extensively investigated in the following sections. form
The passive scalar field(x,t) obeys(see Ref[10]) the " "
Fokker-Planck equation O (XX T =(0 ) (X, T, 7)
G OX, 1) + (V- V) 0(x,t)=DoA O(x,1). (1) +WEX,T)-VOOX, T, (7)

The advecting velocity(x,t) is incompressible and given by Where the angular brackets denote the average over the peri-
the sum ofu(x,t) and U(x,t). The first is periodic both in °dicities. The following equation is obtained:

space(in a cell of sizel) and in time(the technique can be (0) ) (1) (1) — (0)
extended with some modifications to handle the case of a 70T (U-V)OT)+ L0 =Va(DagV 07, 8
random, homogeneous, and stationary velocity fiekhe  \ypere

second is the large-scale component/pfvhich varies only

on a typical scalel such thatl/L=e<1, wheree is the D (X, T)=68,5D0—(U,Wg) (9
parameter controlling the scale separation. We are interested
in the dynamics of the field(x,t) on large scales dd(1/e). s the eddy diffusivity(which is actually a second-order ten-

Simple physical reasoning suggests that the characteristiorial field and w(x,t;X,T) has a vanishing average over
time scale associated with the diffusive dynamics should b¢he periodicities and satisfies the equation
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AW+ (u+U)- dw—Dyd*w=—u. (10 The vector fieldw has vanishing average over the periodici-
ties and satisfies
Note that wherl is not a pure mean flow but dependsXn
andT Eq. (10) should be solved for every such valueWf  ;, +(U- )Wy~ 94(D g0 gWi) = — Uy + 4Dy, k=1,2,3.
This point can be critical for computer memory costs when (16)
numerical methods are employed to solve such equation.

From Eq.(8) and from the solvability condition of E@5) In the cases wheB,; does not depend on space and time

(0) ) (0 — Egs. (15 and(16) reduce to the usual multiscale equations
IOy +(U-V){6TH=0 (1) for the passive scaldsee, e.g., Ref.7]). In the next section

one obtains the Fokker-Planck equation for the figldde- W€ sh_all show a sir_nple flow that permits us to calculate
fined aseLE<0(°)>+ « 49(1)> analytically the solution of Eq(16).

90+ (U-0) 0. =0,(D 4p950,), (12 || WEAK AND STRONG SWEEPING: TWO DIFFERENT

, ) EFFECTS ON THE CORRELATION TIMES
where the usual variables,t are used. From Eq(12) it

appears clearly that the enerdy?dV is controlled by the We apply the results outlined in the preceding section to

symmetric part of the eddy diffusivity. This can be easily the simple case of random parallel flofii] in the presence

shown to be positive, as in the case without |arge-sca|@falarge-scale velocity field. Such idealized flows permit us

streaming 9]. to obtain analytical expressions for the correlation time of
For such a purpose, let us consider #tl and thepth ~ turbulence and thus to clearly capture the physical mecha-

components of Eq10) and multiply byw andw,, , respec- nisms associated with the large-scale streaming.

tively. Taking the sum and averaging, the time derivative and

the advective term vanish and we obtain A. Effective correlation times for parallel flows

D.s+ D e In three dimensions, random parallel flows, in the pres-
T=Do[5ag+(t9wa'(9wﬁ>]- (13)  ence of a large-scale advecting velocity fiélgX,T), are
defined as
This tells us that the integral @ over the whole space is a VXt X, T)=u(x,t) + U(X,T), (17)

decreasing function of time and the passive scalar cannot
undergo amplification. .

The calculation of eddy diffusivities is reduced to the so-With
lution of the auxiliary equatiofi10). Numerical methods are
generally needed to solve it, but there are a few cases where u(x,t)=(u(y,z1),0,0, U(X,T)=(0U(X,Z,T),0).
one can obtain analytically the solution of H40). Among (18
them, there are parallel flows at small scales in the presence

of large-scale advecting velocity fields. Such a class of ﬂowﬁ-lereu(x t) is random, homogeneous, and stationary and

will be investigated in Sec. II. _ . andU do not depend or andY, respectively, on account of
In the case whetd depends on space and time and it ISincompressibility.

not a pure streaming, there is a thi'rd range of c;haracteristic The solution of the auxiliary equatidtL0) is obtained by
scales, i.e., very large scales-L. Since Eq(12) is a pas-  noting that such an equation can be reduced to a form in-
sive scalar equation, we expect that it should lead to a pure'Volving only thew, component. The lattefwhich is in the

diffusive dynamics at those very large scales. The difference,gt variables can be easily solved in Fourier space. The
with respect to the usual passive scalar equation is that ong,| tion is

has also to homogenize the diffusivity term, which also de-

pends on space and time. Multiscale techniques can clearly .

be applied to derive the effective equations valid at very WK, 0:X,T)= —u(k, ) (19)
large scalesyr=L/¢€’. By definingX=e¢'x andT=¢'?t and B io+k’Dg+iU-k’

using the same procedures previously discussed, we obtain a

close evolution equation for the mean fiedld=(6{”) (av-  which, after introducing the advective-diffusion propagator
erages are performed over the cell of size

710:=Dig¥aV 0, 19 Gk X, )= 2D, 410k
where the eddy-diffusivity tensor is given by
takes the form
Dgfﬁ):_<UaWB>—;<UBWa>+<DararWB>"2_<DBsﬁsWa> ,\
Wi (K, 0;X,T)=—0(K,0)G(k,w; X,T). (20
N (Dap) +(Dga) (15
2 ’ From Eq.(9) the eddy diffusivity is easily found
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while the correlation time of the flow is defined ag
= [, S(t)dt. Sweeping will therefore decreaéacrease the
correlation time whenrq<7y (7> 70)-

It immediately follows from expressiof27) that if Cy(t)
does not have anticorrelated regiofi®., Cy(t)=0 Vt],

Hereafter, D, and D, are the components of the eddy- then

diffusivity tensor orthogonal and parallel to the direction of

the velocity component). Furthermore, we have defined
E(k, ) =(|0(k,0)|?).

The expression foG(k,w;X,T) given by Eq.(20) can be
recast in the more convenient form

+ o

é(k,w;X,T)zJo

e—[iw+k2D0+iu.k]ada_ (22)

By inserting Eq(22) into Eq.(21) and assuming separability
in E(k,w) [i.e., E(k,w)=E(k)S(w)] the following expres-
sion forD, is found:
Dl(X,T)=D0+f S(t)f E(k)e~[K*DotiU-Kltg gk,
0
(23)

wherel%(k) is the energy spectrum arg{t) is the temporal
part of the autocorrelation function.

Teff< To (29)
as a consequence of the second relation in ). We
remark that wherC(t)=0, relation(29) is fulfilled inde-
pendently of the sweeping intensity.

From Eq.(23) it is easy to verify that for strong sweeping
(i.e., U>Ry/7) one obtainsD, «1/U%. For the temporal
part of the autocorrelation functions taken as, in R&8],

S(t)y=e"tm, (30)

the expression for the effective correlation time reads

1/k% [ 1)2
et g (32)

where 1/k%=(1/u?) [ (1Kk?)E(K)dk. The effective correla-
tion time 7, thus tends to zero whed— o0, independently

of the form ofC(t) andS(t). Such a result holds indeed for

Note that for strong sweeping the above relation holds fogeneral flows. o
general flows. This point can be easily checked by observing Enhancement of correlation times can only takes place

that after imposindgU|>|u| in Eq. (10) one obtains the ex-
pression(20) for w; .

when the sweeping is weak and anticorrelated regions are
present. The importance of anticorrelated regions already has

Despite the simplicity of the flow here considered, expresPeen pointed out in Ref14].

sion (23) permits us to analyze the two different regimes

To concentrate our attention on weak sweeping, we can

associated with weak and strong sweeping, respectively. Té€at perturbatively theJ term in the exponential on the
start our analysis, let us consider for simplicity the case whefight-hand side of Eq(23) and consider second-order times.

D, vanishes, to obtain

DL(X'T):J:S(t)E(Ut)dt, (24)

where E(Ut), the inverse Fourier transform d%(k), is
given by the two-point correlation function

E(Ut)=(u(x+Ut)u(x)), (25
which does not depend ox due to homogeneity. When
=0, E(Ut)=E, is the energy of turbulence.

Thanks to the properties of correlation functions, wien
=0 we can write down

E(Ut)=EyCy(t) with |[Cy(t)|<L1. (26)
By inserting Eq.(26) into Eqg. (24) we obtain
DL(U):EOJO Sef(t) dt=Eq e, (27)

where Sg(t) =St)Cy(t) and the effective correlation time is
defined as

Te= fomseﬁmdt, (29)

Expression23) reduces then to
U2 © N ©
D. (X, T)=Eo7o— - f sz(k)dkf S(t)t?dt. (32)
0 0
The integralf; S(t)t?dt can be negative for admissible cor-
relation functiong15]. As an example we can choose
S(t)y=e ' cog Ot). (33

Here the correlation time of the flowy=[{S(t)dt=T/(1
+02T?) and

“s(t)t2di= 2T 30°T2-1)= 63T 2
o SOPAt= = gy )= =677, 3]
(34)

Expression(34) turns out to be negative whefh>3r,. Fi-
nally, by inserting Eq(34) into Eq.(32), the expression for
D, becomes

D, =Eq7es

with

(35

T 4\ U2
Teff= To+37'8 — —) —_

) 3 EO

f K2E(k)dk.
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We conclude that

Teff>TO |f T>%To.

U2 o0 “ o0
— 2 2
Te(U) =79 Eg fo k E(k)dkfo S(t)tdt  (42)

Thus an enhanced correlation time can occur in the presentégee Eq(32)]. From Eq.(39) the eddy diffusivity is found:

of weak sweeping.
The expressions for.; obtained in this section have been

derived by “observing” the dynamics of the passive scalar

field on scale of the order df, the length scale of the ve-

locity field U. For such a range of scales, eddy diffusivities

2
Yo 2(£) w__ 1

<Teff(U)> <Teff(U)>

(42

D® =

and effective correlation times are smoothly dependent on

spatial and temporal variablése., onX andT).

We conclude that{&> 7, when [§S(t)t?dt<0. As a con-

Our aim now is to investigate effective correlation timessequence, the mechanism that can work to enhance the cor-

by observing the dynamics on scales much larger thaAs
already shown in Sec. |, the dependence on variaklesd
T is averaged out.

In order to tackle the problem analytically, we focus our

attention on the flo(18) with U depending only onY.
Equation(12) then becomes

310.=dx(D, dx0,), (36)

with D, given by Eq.(24).
For time-independent solutions, from E{.6) it follows
that

ax( DJ_ (?XW) = - aXDL y (37)

wherew stays forw,. This equation can be integrated to
obtain

X
W(X)=JO mdy+,8—x, (38

where constanta and 8 can be calculated by imposing the
periodicity of w [i.e., w(x)=w(x+L)] and [§w(y)dy=0
(i.e.,{w)=0). From both conditions we obtain

NS S T
oy PT2Lamy Jo Jo Doy W

As one can easily check, by plugging Eg88) into Eq. (15
the eddy diffusivity is found:

1

(L) —
D™ =b )

(39

For strong sweepinfj.e., D, (U) = (u21/k?% 7,U?] we ob-
tain

12 1 _ 1K2
D(E):UST—OWEUSTE?? with Té?f):T—om.

(40

relation time for weak sweeping does not depend on the
scale on which one observes the dynamics of the passive
scalar field.

Ill. DEPLETION OF CORRELATION TIMES FOR MORE
GENERAL FLOWS: NUMERICAL INVESTIGATION

The previous arguments applied to the simple case of ran-
dom parallel flow have revealed the mechanisms that can act
either to enhance or to deplete the effective correlation times
of turbulence. In particular, for general flows we have shown
that for strong sweeping depletion always occurs, indepen-
dently of the form of the autocorrelation function of turbu-
lence. Here we are interested in analyzing the reduction of
the correlation time for more general flows and moderate
sweeping amplitudes. Since such an investigation is not ac-
cessible analyticallyin this case in fact the nonlinear term
u- dw cannot be neglected in E¢LO)], we have decided to
perform direct numerical simulations of the original Fokker-
Planck equatiorl).

Integration (without space symmetrig®f the stochastic
partial differential equatioril) is carried out in two dimen-
sions on a square domain with sider.2Given the spatial
periodic boundary conditions, we can solve the equation by a
pseudospectral methoee Ref.[16]). Dealiasing is ob-
tained by a proper circular truncation, which ensures better
isotropy of numerical treatment.

Time marching is performed using a leapfrog scheme
mixed with a predictor-corrector schenigee Ref[17]) at
regular intervals. In all the cases to be reported here and in
the subsequent sections, we have worked with a resolution of
512x512, which is found to be always adequate working
with (adimensional molecular diffusivity Dy=D/27ug
=2x10"3. The system evolution is computed for#0with
a time stepAt=71,/100, depending orry, the correlation
time of the turbulent fluctuations.

The advecting velocity field is given by the sum of a
constant part) and a zero mean Gaussian random fie)d
statistically homogeneous, stationary, and homogeneous with
an asymptotic spectrum of the Kraichnan-Batchelor type

Thus fluctuations in the large-scale velocity field reduce the -~ 2 23
effective correlation time. Note that the decorrelating effect E(k)=2pguok > for k=pg 43

is present also i{U)=0.
In the regime characterized by weak sweepiby, is
given by

D, (U)=Eq7er(U)

with

E(k)=0 for k<pe.

The velocityU (held constant during the marching of each
simulation is posed along th& axis.

The time dependence of the two-point velocity correlators
is exponential: S(t)=e~ "0, To obtain such a temporal



56 EFFECTIVE CORRELATION TIMES IN TURBULEN . .. 5505

behavior a digital filter transfer function has been realized
(see Ref[18] for detailg. More precisely, for each time step
the stream function of the velocity fieldhas been defined in
Fourier space as

Pk, t+ At =ag(k, )+ VI—azy(k,1), (44)

wherea=e 2Y70 and the7(k,t)’s are zero-mean complex
Gaussian random variables chosen independently for leach
[except for the Hermitian symmetay( —k,t) = *(k,t)] and

at each time step. Their variance is

. E(k
k)= 9

It is easy to verify from Eqsi44) and(45) that the following
relation holds:

A Ekk) .
<<//(k,t)z//(k’,t’)>=5(k+k’)ve lt=t'll7o_ (46)

The initial condition of the passive scalar field is chosen
0(x,0)=4+ cog a-x) +cog B-X), (47

with the wave numbera=(2,0) andB=(0,2). Initial data
are thus concentrated only on the large scalegp, and 8
<pg.

We know from the previous multiscale theory that the
temporal evolution off in the infrared limit(t>7, and k
<po) is purely diffusive. It follows that

|8(K, t)|2oce™ 2Dapkakst (48)

Strouhal number

and in particular
“ ) “ N FIG. 1. Contour map for the diagonéhdimensional compo-
|0(@,t)|?0ce™ D1t | 9(B,1)|2xe™2PLA. (49)  nents of the turbulent diffusivity as a function of the raltléu, and

of the Strouhal numbera) D,/27ru, and(b) D, /27uy. The con-
The parallel and transverse effective diffusivit@gandD tour interval is 0.2% 103,

can thus be easily measured by performing a log-linear fit of _ .
|6(a,t)|? and|8(B,1)|2 vs t. The temporal range of the fit The second remark is that whdw/u,=2 even points

should be chosen at times large enough for the diffusivéVith S=5 are mapped to regions wit;<1. It follows that
behavior(49) to take place. either moderate or strong sweeping makes the calculation of

In order to investigate the effect & on the effective the diffusivities essentially equivalent to the analysis of a
correlation time of turbulent fluctuations, we have measured!OW with smallS. This is the realm of application of pertur-
D, andD, for simulations with different values d ands. bative techniques. This remark will be exploited in the next
The latter is the Strouhal number definedSxsuyropy/2m section to derive explicit formulas for the effective diffusivi-
=14/ty, Wherety=2m/ugp, is the turnover time of the ties in the presence of moderate or strong mean flows.
flow.

In Fig. 1 we show the eddy-diffusivity map as a function
of U/ug and S. Two remarks are in order. First, we note  As discussed in more detail in the Appendix, when the
[principally from Fig. 1a)] that points belonging to the re- correlation time of turbulence is small, the calculation of

gions of theS-U/u, plane with largeS and nonzerd) are  eddy diffusivities can be tackled self-consistently. In particu-
equivalent(in the sense that they have the same eddy diffuiar, the following integral equation is derived:

sivity) to points withU’=0 andS’ always smaller thais,
namely,

IV. EXPLICIT EXPRESSIONS FOR EDDY DIFFUSIVITIES

) (028,53~ da05)f(Q)
D ap= 3apDo+ (2m)¢ f 4 Ury+iq-U+ Drsqrqs,(S

D(U,S)=D(0Se) With Se<S, (50)

which is a clear signature of the decorrelating effect due tavhere the autocorrelation functi@®{t) is given by Eq.(30).
the sweeping. Since, and p, are kept fixed, the previous If the mean velocity field component is zero andDf,z is
inequality is indeed equivalent ta.4< 7. isotropic,D =D d,5, Eq.(51) reduces to
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FIG. 2. Convergence profil®™M/2zwu, of the (adimensional
turbulent diffusivity for S=0.2 (dashed curyeand S=50 (solid FIG. 3. Convergence profile for the diagon@dimensional
curve. Iterations have been performed on E§2) in the two-  componenD(V/2mu, (solid curve andD{"/27u, (dashed curve
dimensional case with the spectru@d). The first guess field is  Of the turbulent diffusivity. Iterations have been performed on Eq.

D(°)=DO+ %UCZ)TO- (51) in the two-dimensional case with the spectry#8), U/u,
=2.0, and S=50. First guess is given byD(?=D{?=D,
- 1.2
D=D +1 fxd E(@ 52 et
—70"d ), “r+De? 2

For turbulent spectra with large values of the paramster
where convergence of successive iterations is achieved more
slowly, as should be expected. This aspect is detectable by

- f(q)q observing Fig. 2(solid curve relative to the convergence

E(q)= [(4—d)729 3]’ d=23 53 profile D™ for S=50.

R The number of iterations to achieve convergence is thus

is the energy spectrum. Siné€q)=0, the method othain  directly proportional t&. The remark we shall exploit is that
fractionsis applicable to Eq(52) for findingD. Given afirst  a similar situation occurs in the presence of strong sweeping,

d+1

guessD(© for D, the next approximation but whereS is replaced by5., as stressed by observing Fig.
- 3, in which the convergence profil&" (solid curve and
D(l>=5a5Do+l fxdq E(Q)(O) ; (54) D™ (dashed curvefor U/up=2.0 are shown. lIterations
dJo 1/mo+D"g have been performed in the two-dimensional case starting

. ~ from the first guesDY=D{"=Dy+3ud7, on the self-
is smaller than the true valug. The subsequent iterations .,nsistent equatiotbl) with energy spectrum given by Eq.
result in a convergent series of approximations for The (43). The Strouhal number iS=50.

true D lies, in all cases, between the values of two subse-
quent iterations. We remark that wheg<1 (i.e., S—0),
relation (52) gives immediately

The convergence profiles can be compared with that al-

ready shown in Fig. 2 relative to the sarebut with U

=0. As one can see, convergence tuy=2 is achieved

1 much faster than in the case with=0. The same conclusion
D=Dgy+ d ugro, (55 holds in general when the sweeping is strong enough.

Now we can exploit the above remarks concerning the
the well-known result corresponding to turbulence with a€ff€ct of strong sweeping on the convergence profiles of tur-
short memory(i.e., 5-correlated in time bglgnt d|ﬁu3|y|t|es |n.order to obtain their approximate ex-

WhenS=1, successive iterations of E@2) starting from  Plicit expressions valid for alf's. For such a purpose, let us
the first guesg55) result in a rapidly convergent series of insert into Eq. (51) the first guess D{”=D{”=D,
approximations for the true valu. As an example, in Fig. +(1/d)ujrss, with 75 suggested by Eq.(31): 7oy
2 the convergence profil®(™ is shown as obtained by per- =(1/k?)/7,U2. Due to the isotropy of the first guess here
forming successive iterations of Eq52) in the two- considered, the angular integration in Ef1) is easily per-
dimensional case witB= 0.2 (dashed curve As we can see, formed. More accurate expressions for the turbulent diffu-
two iterations are sufficient for essentially perfect agreementsivities are thus found for the two-dimensional case
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FIG. 4. Behavior of the percentage ertdD (see the tejtver-
sus the ratioU/uy, for different values of the Strouhal num-
ber: (a) S=0.5, (b) S=1.0, (c) S=5.0, and(d) S=10.0. Solid
curves correspond taD obtained withD, given by Eg.(56).
Dashed curves are relative to the first guess.

D\\:DO+J dp—z—z(vf2+P2U2 f), (56)

= E(p) ( 2
D,=D +f d f— 5
s 0 p 2u2 \/f—z_’_—szz ( 7)
and for the three-dimensional case
(p) 2 pu
2 f 58
~250[ (59
E(p) f\? pu
=Dy+ fdp H (p_U arctar(T
pU} 9
where
1 1,0\, o 1K1
f:T_0+ Do+auo7-eﬁ P with Teﬁ:T_o U
(60)
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FIG. 5. Same as in Fig. 4, bu, is replaced byD, in the
definition of AD.

different values of the Strouhal numb8r (a) S=0.5, (b)
S=1.0,(c) S=5.0, and(d) S=10.0. Solid curves correspond
to AD obtained withD, given by Eq.(56). Dashed curves
are relative toAD calculated with the first gueds(® . Fig-

ure 5 is the same as Fig. 4, but it is relative to the transverse
componenD | .

From such figures several observations are worth men-
tioning. In all cases reported in the figures it is evident that
approximate explicit expressions work better and better as
the ratioU/ug increases. Fod/ug=1 errors between turbu-
lent diffusivity values predicted by analytic expressions and
those obtained by direct numerical simulations of the
Fokker-Planck equation are always smaller than 10%. Errors
become smaller than 5% fdd/uy=3. The quality of the
approximation reduces wheWug=<1, in agreement with the
asymptotic character of the first guess employed., the
first guess corresponding to strong sweeping regimes

Furthermore, we notice that the agreement between values
from our formulas and the measured values is better for the
transverse componeni®, than for the parallel components
D,. This is not surprising: The behavior &f; for large U
goes to zero as W, while the first guess foD, employed
here goes to zero asU?, which is the behavior ob, for
strong sweeping.

Our explicit expressions for effective diffusivities can be
generalized to the case whéhis not a pure streaming but
varies on large scald# the multiscale formalisn(X,T)].
Equation(40) suggests that can be replaced b)J(U2 in
explicit formulas. By performing such a substitution, effec-
tive diffusivities given by explicit expressions must be seen

The above expressions for the turbulent diffusivities in theas relative to the dynamics of the scalar field on a scale much
two-dimensional case have been compared with measuregrger than those on whicH varies.

valuesD[" andD'" obtained by performing direct numerical
simulations(see Sec I)l of the original Fokker-Planck equa-

tion ().
Figure 4 shows the behavior of the ertbb (percentage
defined asAD=(D,—D{")/D[F versus the ratidJ/u, for

CONCLUSION

The effective correlation times in turbulent transport of a
passive scalar field in the presence of a large-scale flow have
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been investigated. Approximate explicit expressions for theeadings and comments. | gratefully acknowledge N. Arena,
effective diffusivities have been proposed. In the present pawho helped me with the production of the figures. | thank the
per, the advecting velocity field is made by a constamt Meteo-Hydrological Center of Liguria Region and the Swiss
varying on large scalegpart and a fluctuating random part, Scientific Computing Center, where part of the numerical
with given statistical properties. By using multiscale meth-analysis was done.

ods, we have performed a generalization of the theory in Ref.

[9] (see also Ref[7]) showing that, in the presence of a  APPENDIX: SELF-CONSISTENCY EQUATION FOR
large-scale velocity field and with scale separation, the large- EFFECTIVE DIFFUSIVITIES

scale scalar field dynamics is governed by an effective _ _ o

Fokker-Planck equation characterized by an effective turbu- We shall give details of the derivation of theelf-
lent diffusivity, which is actually a second-order tensor field consistenequation(51) for finding the effective diffusivities
(smoothly dependent on space and temporal coordiriEe in the presence of a mean flow. The passive scalar field
calculation of the latter is reduced to the solution of onef(x,t) obeys the equation

auxiliary equation. The effective diffusivity is always larger
than the molecular one, i.e., incompressible flow enhanced dO(X,)+(U+u)- Vo(x,t)=DoAd(X.1), (A1)

diffusion, as expected. whereU is constant and the field is incompressible ¥ -u

The dependence of the effective diffusivities on the Iarge—zo)’ homogeneous, stationary, and has zero-average value

scale velocity field has been investigated both analytically<u>:O The only hypothesis we shall make on the velocity
and by numerical simulations performed on the orlglnalfield u is that it ensures a diffusive transport for sufficiently

Fokker-PIanck equation governing t'he scalar.dynamics qtarge times. As shown in Ref§l9, 20, a sufficient condi-
full scales. With respect to the analytical analysis, the resultﬁon is that the variance of the vector potential be finite. This

of the theory carried out via the multiple scale method havqs the case, for example, for usual energy spectra having

been applied to the simple case of parallel flow in the Pres ioffs both at large and small scale.

‘e have obtained the soluion of the aLxirary equation anay.,.CL US NoW defive the general equation governing the be-
y €q havior of the mean scalar fiel). The original equation

lytically and exact expressions for the effective correlation : ; : :
time of turbulence have been found. The effect of the IargegAl) I conveniently rewritten in the compact form

scale velocity field has been investigated. We have focused Lo0=L,0, (A2)
our attention on the cases of strong and weak sweeping, re-
spectively. For strong sweeping decorrelation always occurghere
independently of the form of the autocorrelation function of
turbulence: The effective correlation time tends to zero when Lo=d+U-V=DyA, L,=—-u-V. (A3)
the sweeping becomes strong. The same result holds for gen-
eral flows. For weak sweeping, the correlation time can be he field ¢ is decomposed into its average and fluctuating
either enhanced or depleted. parts as

In order to investigate the reduction of the correlation -
time for more general flows and moderate sweeping ampli- 0=(0)+ 0. (A4)
tudes, we have performed direct numerical simulations of the , ) ) ,
original Fokker-Planck equation governing the scalar dy-!n€ following equations immediately follow from Eq#\2)
namics at full scales. Results have confirmed those obtained'd (A4):
with the theoretical analysis performed on parallel flows.

The decorrelating effect associated with the strong sweep-
ing has been exploited to derive explicit approximate formu- ~ ~
las for the effective diffusivities. The basic idea consists in (Lo=L1)0=Li(60)—(L6). (A5b)
observing that thelirect interaction approximatiorfor the
scalar problem works better and better as the correlation tim
of the advecting flow reduces and it becomes exact for flow
S-correlated in time. This allowed us to derive explicit for-
mulas for the effective diffusivities, which were then com-
pared with numerical simulations of the original passive sca- _
lar equation. Effective diffusivity values obtained with our 9(1)=J’ G(1,2[L(2){(6(2))—2(2)]d2, (A6)
formulas are in good agreement with the measured values. In
all cases considered, the error is always smaller than 10%
moderate sweeping. It becomes smaller than 5% for stro
sweeping.

Lo(0)=(L6)=5, (A5a)

QereE(x,t) plays essentially the same role as the mass op-
rator in quantum field theory. The solution of E45b) can
e formally expressed in terms of tfanknown Green's
function G as

];%here we have used a simplified notation for the space-time
Variables k1,t1) and the Green’s functiol satisfies the
usual equation £o(1)—£,(1)] G(1,2)=6(1—2). Operat-
ing with £,(1) on Eg.(A6) and taking the average, we ob-

ACKNOWLEDGMENTS tain the equation fok,

It is pleasure for me to thank M. Vergassola for very _ _
useful discussions. | am also grateful to R. Benzi, R. Fest%(l)_ (Li(DG(12£,(2))(6(2)) —(£,G(1,2)%(2)d2.
C. F. Ratto, R. Scardovelli, and A. Vulpiani for their critical (A7)
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Equation(A7) can be recast in a more convenient form by -
using the Dyson equation G=(G)+J G[L{G)—(L,G)]. (A15)

Let us now treat perturbatively the second term on the right-
hand side, stop at first order, and use the resulting expression
to calculate(£,G), which appears in the exact Dyson equa-
whereGy is the Green'’s function of, [i.e., £5(1)Go(1,2) tion

=8(1—2)]. Equation(A8) is an immediate consequence of

the definition of the Green’s functiors and G,.

G(1,2)=GO(1,2)+J’ Go(1,3£,(3)G(3,2d3, (A8)

Inserting Eq.(A8) into Eq. (A7), we finally obtain <G>:GO+J Go(L,G). (A16)
The final result expressed in Fourier space is exactly the DIA
E(X,t)=VQ[J de d7 Dp(R, )V g(O(X—R;t—1))|. equation(A14). A
(A9) The Fourier transforn€,, 4(k, 7) of the two point correla-

tion function(u,(1)ug(2)) for the velocities, in an incom-
Here we have used the convolution structure of E&J), pressible, homogeneous, and isotropic medium is given by
which is due to homogeneity and stationarity and the Fourier

transform ofD 4 is defined as -
Cop(k,7)=(8,5k* = K,Kg) (K, 7). (A17)

Let us consider for simplicity a separable expression for

Raglk, ) (a10)  9(k7):

6(1 k,w:_ ~ ’
plic) 14k KR 5K, ©)

g(k,7)="f(k)e" 7',

with Igiaﬁ the Fourier transform of-u,Gu,z. Equation(A9)

gives for the evolution of the mean scalar field where an exponential behavior for the time dependence of

the two-point correlation function is also assumed.

After inserting the above expression far,s(k,7) into
Eq. (A14), we obtain

£°<0>:V“H de dr DQB(R,T)VBM(X—R;t—T))}. .
(Al  (G)(k,w)= éal(k,w)+(2“—w)’ifqu(qzéaﬁ—qﬁqa)f(q)

No approximation has been made to derive this equation, ~

which is, however, only formal sinc® ,z is not known. X{(G)(k—q,w+ 1i7y)
We restrict now Eq.Al1l) to analyze the transport on

scales large compared to those of the turbulent fieléor  \yhered is the space dimension. Such an expression is con-

these modes thB ,4(K, ») appearing in Eq(A1l) is essen-  tinued fraction type of equation with positive terrfise.,

tIaIIy equal to its value at the Origih=0, w=0. It follows q(1+d)f(q) is positi\/e since it is proportiona| to the energy

-1
, (A18)

that the mean scalar field evolves according to spectrum of the turbulent fluctuatiopnghus it can easily be
solved numerically by the method of “chain fractiong13].
9(0) +U-V(0)=D 5V .V 5(6), (A12) In the infrared limit, it is easy to verify that EqA18)
becomes

where the effective diffusivity tensor is

Dup= 0,400t | R [ dr(u, (161 2uy(2). (G)(k,w)=[iw+ik-U+D,gkokel ™ (AL9)

(A13)  whereD,; is given by Eq.(A13) after substitutingG with
the Fourier transform ofG)(k,1/7g). Equation(A13) thus

The problem now is to determine the Green’s functionbecOrnes an equation for findir, ;

appearing in Eq(A13). The DIA provides the closed qua-
dratic equation (25 V()
q aB_qaqﬁ q
D,g=38,3D0+ j . .
) = 020" o myd | Y97 ¥iq- U+ Dreg,as
43 (A20)

Such a method for findin® 4 is calledself-consistenf21].

with (£,(G)L,) the Fourier transform of£;(G)L,). A pos-  There are two steps to obtain Eg20): First, G has been
sible procedure leading to the DIA equatithl4) from the  substituted by G) in the exact equatioA13); second the
original exact equatiorfA5) is the following. Adding and infrared approximation fo{G) has been taken. It is quite
subtractingZ,(G) to and from Eq(A5a) and using the defi- evident that the latter approximation works better and better
nition of G, we obtain the relation as the spectrum of turbulence decreases quickly.

<é>(k,w>=éo<k,w>+éo<k,w><£|<G>£.><k.w><é><l(<Aal»
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