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Effective correlation times in turbulent scalar transport

A. Mazzino
INFM–Dipartimento di Fisica, Universita` di Genova, I-16146 Genova, Italy

~Received 20 January 1997!

The effective correlation times in turbulent transport of passive scalar fields in the presence of a large-scale
flow are investigated. For weak sweeping, the effective correlation times can be either enhanced or depleted
depending on the detailed form of the autocorrelation function of turbulence. Strong large-scale sweeping
always reduces the effective correlation times. This fact is exploited to derive explicit approximate formulas
for the effective diffusivities. These expressions are then compared with numerical simulations of the Fokker-
Planck equation for the passive scalar field.@S1063-651X~97!08711-4#

PACS number~s!: 47.27.Qb, 47.27.Gs
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INTRODUCTION

Turbulent transport of passive fields is of major impo
tance in various domains ranging from astrophysics to g
physics. The main quantity of interest is typically the rate
which turbulence transports the scalar, e.g., a pollutant.
times large compared to those characteristic of the turbu
field, transport is diffusive and is characterized by effect
diffusion coefficients~which are actually a second-order te
sor!. For high-Reynolds-number incompressible flow, t
turbulent rates of transport typically greatly exceed the c
responding molecular rates. The molecular diffusivityD0 is
thus much smaller than the effective diffusivity and can
neglected. An exact formula obtained by Taylor@1# allows
one to express the effective diffusivities as time integrals
Lagrangian correlations. The problem is that the relation
tween Lagrangian and Eulerian averages for generic tu
lent flows is highly complicated. An exception is provide
by the flows having short correlation times. For rando
flows d-correlated in time, Lagrangian and Eulerian avera
indeed coincide and the effective diffusivities can be de
mined exactly. The resulting expression depends on the
ergy spectrum only. For realistic flows, having finite corr
lation times, the effective diffusivities are general
dependent on all turbulence characteristics and no gen
approach for their calculations is known. Given the statisti
properties of the turbulence, one would like to be able
calculate, at least approximately, the effective diffusivitie
From the point of view of statistical field theory, this pro
lem is equivalent to studying the infrared behavior of t
mass operator appearing in the equation for the ave
Green’s function. A fully consistent statistical theory, t
direct interaction approximation~DIA !, was developed in
Ref. @2#. The idea essentially consists of neglecting a
renormalization of the vertices. The DIA equation for t
passive scalar problem was investigated in Ref.@3#. The qua-
dratic equation for the average Green’s function was sol
numerically and the resulting numerical values of the eff
tive diffusivities were found to be in fairly good agreeme
with the corresponding measured values.

Our aim here is to consider passive scalar transport in
presence of a mean flow. The advecting velocity fieldv is
thus made by a constant~or slowly varying! part U and a
561063-651X/97/56~5!/5500~11!/$10.00
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fluctuating random partu, whose statistical properties ar
prescribed.

The above decomposition, which is standard, for instan
in the framework of mesoscale meteorology@4#, implies that
the small-scale eddies remain stationary while a slow
modification of the large-scale component occurs. In
realm of geophysics, this is a quite common feature, for
ample, inside the planetary boundary layer~PBL! @5#, a thin
atmospheric layer near the ground, where the airflow
strongly driven by sink- or source-forcing terms arising fro
the bottom boundary. In this atmospheric region, it then f
lows that dynamical effects induced by slowly variations
U on the small-scale velocity can be neglected as a rea
able approximation.

Inside the PBL, the response of turbulent flow to sma
scale~dissipative! forcing ~e.g., due to the orography! as well
as, for example, radiative~driving! forcing arising from solar
radiation reflected by the Earth must be accounted for. W
respect to the former, the role of small-scale orography f
tures consists@6# in extracting momentum from the atmo
sphere, primarily either through form drag, due to differe
tial pressure across the object, or through gravity wave d
by which internal gravity waves initiated by flow over th
mountains propagate vertically and may extract momen
from the flow far aloft the surface forcing.

In general, such a type of surface forcing is not invaria
under a Galilean transformation. As a consequence, suc
invariance does not hold for the airflow inside the PB
From this point of view, it may be interesting to investiga
the effect of a slowly varying large-scale flow on the effe
tive coefficients. In fact, for small-scale velocity field n
invariant under Galilean transformations, the large-scale fl
not only contributes~trivially ! to a drift but it can act to
modify the correlation times of the smaller-scale veloc
field.

The first remark we shall exploit is that strong sweepi
reduces the effective correlation times of the advecting
bulenceu. Let us indeed denote byR0 the correlation length
of u. It is physically quite evident that for times larger tha
R0 /U the regions ofu sampled by the scalar are essentia
uncorrelated. This point can be analyzed in full detail
considering the simple case of parallel flows, as done in S
II A. On the other hand, from the results of Ref.@3#, it is
known that the DIA works better and better as the correlat
5500 © 1997 The American Physical Society



f
t

e
co
ca

io

ls
a

e-
ve
on
nd
he
e
in
f-
te
er
tio
a

ca
t

ec
he
il-

rin
o
rn
th
iv
o
e
e
be

y

f

st

is
b

ws

nd
t as

ose

t

e

peri-

-
r

56 5501EFFECTIVE CORRELATION TIMES IN TURBULENT . . .
time of the advecting flow reduces and becomes exact
flows d-correlated in time. We combine these two remarks
derive explicit formulas for the effective diffusivities in th
presence of a mean flow. These expressions are then
pared with numerical simulations of the original passive s
lar equation.

The paper is organized as follows. In Sec. I an extens
of the theory of the passive scalar field outlined in Ref.@7# is
presented in order to deal with velocity fields that vary a
on large scales. The results obtained in that section are
plied in Sec. II to the case of parallel flows. Different r
gimes corresponding to weak and strong sweeping are in
tigated concerning their effects on effective correlati
times. The investigation is carried out both analytically a
in Sec. III, by numerical simulations performed on t
Fokker-Planck equation for the passive scalar field. In S
IV the decorrelating effect associated with strong sweep
is exploited to derive explicit formulas for the effective di
fusivities. Explicit approximate formulas are then evalua
by a comparison with numerical simulations of the Fokk
Planck equation for the passive scalar field. The final sec
is reserved for conclusions. In the Appendix the renorm
ized perturbation theory leading to thedirect interaction ap-
proximationand to theself-consistent methodfor finding the
effective diffusivities is presented.

I. THE MULTISCALE APPROACH IN THE PRESENCE
OF LARGE-SCALE VELOCITY FIELDS

Multiscale techniques~see, e.g., Ref.@8#! have been used
in Ref. @9# to show that the large-scale dynamics of the s
lar, in the presence of scale separation with respect to
small-scale advecting velocity field, is governed by an eff
tive equation that is always diffusive. The calculation of t
effective diffusivity is reduced to the solution of one aux
iary equation.

In this section we generalize such results by conside
velocity fields varying also on large scales. The goal is tw
fold: on the one hand to derive an effective equation gove
ing the scalar field dynamics on large scales and, on the o
hand, to obtain an equation for finding the effective diffus
ity. As we shall see, the effective diffusivity depends n
only on the turbulent velocity fields but also on the larg
scale componentU. Such a dependence, and the related
fects on the effective correlation times of turbulence, will
extensively investigated in the following sections.

The passive scalar fieldu(x,t) obeys~see Ref.@10#! the
Fokker-Planck equation

] tu~x,t !1~v•“ !u~x,t !5D0Du~x,t !. ~1!

The advecting velocityv(x,t) is incompressible and given b
the sum ofu(x,t) and U(x,t). The first is periodic both in
space~in a cell of sizel ! and in time~the technique can be
extended with some modifications to handle the case o
random, homogeneous, and stationary velocity field!. The
second is the large-scale component ofv, which varies only
on a typical scaleL such thatl /L5e!1, wheree is the
parameter controlling the scale separation. We are intere
in the dynamics of the fieldu(x,t) on large scales ofO(1/e).
Simple physical reasoning suggests that the character
time scale associated with the diffusive dynamics should
or
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of ordere22teddy, whereteddy5 l /u0 andu0 is the character-
istic amplitude ofu. Furthermore, the advection byU takes
place on timesO(e21).

In the spirit of multiscale methods~see Ref.@8#!, in addi-
tion to thefast variablesx and t, let us introduceslow vari-
ables asX5ex, T5e2t, andt5et. The prescription of the
technique is to treat the variables as independent. It follo
that

] i°] i1e¹ i , ] t°] t1e]t1e2]T , ~2!

u°u~x,t !, U°U~X,T!, ~3!

where] and¹ denote the derivatives with respect to fast a
slow space variables, respectively. The solution is sough
a perturbative series

u~x,t;X,T;t!5u~0!1eu~1!1e2u~2!1••• , ~4!

where the functionsu (n) dependa priori on both fast and
slow variables. By inserting Eqs.~4! and~2! into Eq.~1! and
equating terms having equal powers ine, we obtain a hier-
archy of equations. The solutions of interest to us are th
having the same periodicities as the velocity fieldu(x,t).

It can be easily checked that the equations at ordere and
e2 are

] tu
~1!1~v•!u~1!2D0]2u~1!52~v•“ !u~0!

2]tu
~0! for O~e!,

~5!

] tu
~2!1~v•!u~2!2D0]2u~2!52]Tu~0!2~v•“ !u~1!

1D0¹2u~0!

12D0~•“ !u~1!

2]tu
~1! for O~e2!.

~6!

Now we make use of the solvability conditions for Eqs.~5!
and ~6! ~Fredholm alternative! and we exploit the fact tha
the solutionu (0) goes to zero on a fast time scale@i.e.,
u (0)(x,t;X,T;t)5u (0)(X,T;t); see@11# for details#. The lin-
earity of Eq.~6! permits us to search for a solution in th
form

u~1!~x,t;X,T;t!5^u~1!&~X,T;t!

1w~x,t;X,T!•“u~0!~X,T;t!, ~7!

where the angular brackets denote the average over the
odicities. The following equation is obtained:

]Tu~0!1~U•“ !^u~1!&1]t^u
~1!&5¹a~Dab¹bu~0!!, ~8!

where

Dab~X,T!5dabD02^uawb& ~9!

is the eddy diffusivity~which is actually a second-order ten
sorial field! and w(x,t;X,T) has a vanishing average ove
the periodicities and satisfies the equation
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5502 56A. MAZZINO
] tw1@~u1U!•#w2D0]2w52u. ~10!

Note that whenU is not a pure mean flow but depends onX
andT Eq. ~10! should be solved for every such value ofU.
This point can be critical for computer memory costs wh
numerical methods are employed to solve such equation

From Eq.~8! and from the solvability condition of Eq.~5!

]t^u
~0!&1~U•“ !^u~0!&50 ~11!

one obtains the Fokker-Planck equation for the fielduL de-
fined asuL[^u (0)&1e^u (1)&,

] tuL1~U•!uL5]a~Dab]buL!, ~12!

where the usual variablesx,t are used. From Eq.~12! it
appears clearly that the energy*uL

2dV is controlled by the
symmetric part of the eddy diffusivity. This can be eas
shown to be positive, as in the case without large-sc
streaming@9#.

For such a purpose, let us consider theath and thebth
components of Eq.~10! and multiply bywb andwa , respec-
tively. Taking the sum and averaging, the time derivative a
the advective term vanish and we obtain

Dab1Dba

2
5D0@dab1^wa•wb&#. ~13!

This tells us that the integral ofuL
2 over the whole space is

decreasing function of time and the passive scalar can
undergo amplification.

The calculation of eddy diffusivities is reduced to the s
lution of the auxiliary equation~10!. Numerical methods are
generally needed to solve it, but there are a few cases w
one can obtain analytically the solution of Eq.~10!. Among
them, there are parallel flows at small scales in the prese
of large-scale advecting velocity fields. Such a class of flo
will be investigated in Sec. II.

In the case whenU depends on space and time and it
not a pure streaming, there is a third range of character
scales, i.e., very large scalesa@L. Since Eq.~12! is a pas-
sive scalar equation, we expect that it should lead to a pu
diffusive dynamics at those very large scales. The differe
with respect to the usual passive scalar equation is that
has also to homogenize the diffusivity term, which also d
pends on space and time. Multiscale techniques can cle
be applied to derive the effective equations valid at v
large scalesa5L/e8. By definingX5e8x andT5e82t and
using the same procedures previously discussed, we obt
close evolution equation for the mean fielduL5^uL

(0)& ~av-
erages are performed over the cell of sizeL!,

]TuL5Dab
~L!¹a¹buL , ~14!

where the eddy-diffusivity tensor is given by

Dab
~L!52

^Uawb&1^Ubwa&
2

1
^Dar] rwb&1^Dbs]swa&

2

1
^Dab&1^Dba&

2
. ~15!
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The vector fieldw has vanishing average over the periodi
ties and satisfies

] twk1~U•!wk2]a~Dab]bwk!52Uk1] iDik , k51,2,3.
~16!

In the cases whenDab does not depend on space and tim
Eqs. ~15! and ~16! reduce to the usual multiscale equatio
for the passive scalar~see, e.g., Ref.@7#!. In the next section
we shall show a simple flow that permits us to calcula
analytically the solution of Eq.~16!.

II. WEAK AND STRONG SWEEPING: TWO DIFFERENT
EFFECTS ON THE CORRELATION TIMES

We apply the results outlined in the preceding section
the simple case of random parallel flows@12# in the presence
of a large-scale velocity field. Such idealized flows permit
to obtain analytical expressions for the correlation time
turbulence and thus to clearly capture the physical mec
nisms associated with the large-scale streaming.

A. Effective correlation times for parallel flows

In three dimensions, random parallel flows, in the pr
ence of a large-scale advecting velocity fieldU(X,T), are
defined as

v~x,t;X,T!5u~x,t !1U~X,T!, ~17!

with

u~x,t !5„u~y,z,t !,0,0…, U~X,T!5„0,U~X,Z,T!,0….
~18!

Hereu(x,t) is random, homogeneous, and stationary anu
andU do not depend onx andY, respectively, on account o
incompressibility.

The solution of the auxiliary equation~10! is obtained by
noting that such an equation can be reduced to a form
volving only thew1 component. The latter~which is in the
fast variables! can be easily solved in Fourier space. T
solution is

ŵ1~k,v;X,T!5
2û~k,v!

iv1k2D01 iU•k
, ~19!

which, after introducing the advective-diffusion propagato

Ĝ~k,v;X,T!5
1

iv1k2D01 iU•k
,

takes the form

ŵ1~k,v;X,T!52û~k,v!Ĝ~k,v;X,T!. ~20!

From Eq.~9! the eddy diffusivity is easily found
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D'~X,T!5D01E E
2`

1`

Ê~k,v!Ĝ~k,v;X,T!dk dv,

D i5D0 . ~21!

Hereafter, D' and D i are the components of the edd
diffusivity tensor orthogonal and parallel to the direction
the velocity componentU. Furthermore, we have define
Ê(k,v)5^uû(k,v)u2&.

The expression forĜ(k,v;X,T) given by Eq.~20! can be
recast in the more convenient form

Ĝ~k,v;X,T!5E
0

1`

e2@ iv1k2D01 iU•k#ada. ~22!

By inserting Eq.~22! into Eq.~21! and assuming separabilit
in Ê(k,v) @i.e., Ê(k,v)5Ê(k)Ŝ(v)# the following expres-
sion for D' is found:

D'~X,T!5D01E
0

`

S~ t !E Ê~k!e2@k2D01 iU•k#tdt dk,

~23!

whereÊ(k) is the energy spectrum andS(t) is the temporal
part of the autocorrelation function.

Note that for strong sweeping the above relation holds
general flows. This point can be easily checked by observ
that after imposinguUu@uuu in Eq. ~10! one obtains the ex
pression~20! for ŵ1 .

Despite the simplicity of the flow here considered, expr
sion ~23! permits us to analyze the two different regim
associated with weak and strong sweeping, respectively
start our analysis, let us consider for simplicity the case w
D0 vanishes, to obtain

D'~X,T!5E
0

`

S~ t !E~Ut !dt, ~24!

where E(Ut), the inverse Fourier transform ofÊ(k), is
given by the two-point correlation function

E~Ut !5^u~x1Ut !u~x!&, ~25!

which does not depend onx due to homogeneity. Whent
50, E(Ut)[E0 is the energy of turbulence.

Thanks to the properties of correlation functions, whet
>0 we can write down

E~Ut !5E0CU~ t ! with uCU~ t !u<1. ~26!

By inserting Eq.~26! into Eq. ~24! we obtain

D'~U !5E0E
0

`

Seff~ t !dt[E0teff , ~27!

whereSeff(t)5S(t)CU(t) and the effective correlation time i
defined as

teff5E
0

`

Seff~ t !dt, ~28!
r
g

-

o
n

while the correlation time of the flow is defined ast0

5*0
`S(t)dt. Sweeping will therefore decrease~increase! the

correlation time whenteff,t0 (teff.t0).
It immediately follows from expression~27! that if CU(t)

does not have anticorrelated regions@i.e., CU(t)>0 ;t#,
then

teff,t0 ~29!

as a consequence of the second relation in Eq.~26!. We
remark that whenCU(t)>0, relation ~29! is fulfilled inde-
pendently of the sweeping intensity.

From Eq.~23! it is easy to verify that for strong sweepin
~i.e., U@R0 /t0! one obtainsD'}1/U2. For the temporal
part of the autocorrelation functions taken as, in Ref.@13#,

S~ t !5e2utu/t0, ~30!

the expression for the effective correlation time reads

teff5
1/k2

t0
S 1

U D 2

, ~31!

where 1/k25(1/u0
2)*(1/k2)Ê(k)dk. The effective correla-

tion time teff thus tends to zero whenU→`, independently
of the form ofCU(t) andS(t). Such a result holds indeed fo
general flows.

Enhancement of correlation times can only takes pl
when the sweeping is weak and anticorrelated regions
present. The importance of anticorrelated regions already
been pointed out in Ref.@14#.

To concentrate our attention on weak sweeping, we
treat perturbatively theU term in the exponential on the
right-hand side of Eq.~23! and consider second-order time
Expression~23! reduces then to

D'~X,T!5E0t02
U2

2 E
0

`

k2Ê~k!dkE
0

`

S~ t !t2dt. ~32!

The integral*0
`S(t)t2dt can be negative for admissible co

relation functions@15#. As an example we can choose

S~ t !5e2utu/T cos~Vt !. ~33!

Here the correlation time of the flowt0[*0
`S(t)dt5T/(1

1V2T2) and

E
0

`

S~ t !t2dt52
2T3

~11V2T2!3 ~3V2T221!526t0
3F T

t0
2

4

3G .
~34!

Expression~34! turns out to be negative whenT. 4
3 t0 . Fi-

nally, by inserting Eq.~34! into Eq. ~32!, the expression for
D' becomes

D'5E0teff

with

teff5t013t0
3S T

t0
2

4

3D U2

E0
E k2Ê~k!dk. ~35!
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5504 56A. MAZZINO
We conclude that

teff.t0 if T. 4
3 t0 .

Thus an enhanced correlation time can occur in the pres
of weak sweeping.

The expressions forteff obtained in this section have bee
derived by ‘‘observing’’ the dynamics of the passive sca
field on scale of the order ofL, the length scale of the ve
locity field U. For such a range of scales, eddy diffusiviti
and effective correlation times are smoothly dependent
spatial and temporal variables~i.e., onX andT!.

Our aim now is to investigate effective correlation tim
by observing the dynamics on scales much larger thanL. As
already shown in Sec. I, the dependence on variablesX and
T is averaged out.

In order to tackle the problem analytically, we focus o
attention on the flow~18! with U depending only onY.
Equation~12! then becomes

] tuL5]x~D']xuL!, ~36!

with D' given by Eq.~24!.
For time-independent solutions, from Eq.~16! it follows

that

]x~D']xw!52]xD' , ~37!

where w stays forw1 . This equation can be integrated
obtain

w~x!5E
0

x a

D'~y!
dy1b2x, ~38!

where constantsa andb can be calculated by imposing th
periodicity of w @i.e., w(x)5w(x1L)# and *0

Lw(y)dy50
~i.e., ^w&50!. From both conditions we obtain

a5
1

^D'&
, b5

L

2
2

1

L^1/D'& E0

LE
0

x 1

D'~y!
dx dy.

As one can easily check, by plugging Eq.~38! into Eq. ~15!
the eddy diffusivity is found:

D ~L!5
1

^1/D'&
. ~39!

For strong sweeping@i.e.,D'(U)5(u0
21/k2/t0U2# we ob-

tain

D ~L!5u0
2 1/k2

t0

1

^U2&
[u0

2teff
~L! with teff

~L!5
1/k2

t0

1

^U2&
.

~40!

Thus fluctuations in the large-scale velocity field reduce
effective correlation time. Note that the decorrelating eff
is present also if̂U&50.

In the regime characterized by weak sweeping,D' is
given by

D'~U !5E0teff~U !

with
ce

r

n

r

e
t

teff~U !5t02
U2

2u0
2 E

0

`

k2Ê~k!dkE
0

`

S~ t !t2dt ~41!

@see Eq.~32!#. From Eq.~39! the eddy diffusivity is found:

D ~L!5
u0

2

K 1

teff~U !L
[u0

2teff
~L! with teff

~L!5
1

K 1

teff~U !L
.

~42!

We conclude thatteff
(L).t0 when *0

`S(t)t2dt,0. As a con-
sequence, the mechanism that can work to enhance the
relation time for weak sweeping does not depend on
scale on which one observes the dynamics of the pas
scalar field.

III. DEPLETION OF CORRELATION TIMES FOR MORE
GENERAL FLOWS: NUMERICAL INVESTIGATION

The previous arguments applied to the simple case of
dom parallel flow have revealed the mechanisms that can
either to enhance or to deplete the effective correlation tim
of turbulence. In particular, for general flows we have sho
that for strong sweeping depletion always occurs, indep
dently of the form of the autocorrelation function of turb
lence. Here we are interested in analyzing the reduction
the correlation time for more general flows and moder
sweeping amplitudes. Since such an investigation is not
cessible analytically@in this case in fact the nonlinear term
u•w cannot be neglected in Eq.~10!#, we have decided to
perform direct numerical simulations of the original Fokke
Planck equation~1!.

Integration~without space symmetries! of the stochastic
partial differential equation~1! is carried out in two dimen-
sions on a square domain with side 2p. Given the spatial
periodic boundary conditions, we can solve the equation b
pseudospectral method~see Ref.@16#!. Dealiasing is ob-
tained by a proper circular truncation, which ensures be
isotropy of numerical treatment.

Time marching is performed using a leapfrog sche
mixed with a predictor-corrector scheme~see Ref.@17#! at
regular intervals. In all the cases to be reported here an
the subsequent sections, we have worked with a resolutio
5123512, which is found to be always adequate worki
with ~adimensional! molecular diffusivity D̃0[D0/2pu0
5231023. The system evolution is computed for 60t0 with
a time stepDt5t0/100, depending ont0 , the correlation
time of the turbulent fluctuations.

The advecting velocity field is given by the sum of
constant partU and a zero mean Gaussian random fieldu,
statistically homogeneous, stationary, and homogeneous
an asymptotic spectrum of the Kraichnan-Batchelor type

Ê~k!52p0
2u0

2k23 for k>p0
~43!

Ê~k!50 for k,p0 .

The velocityU ~held constant during the marching of ea
simulation! is posed along thex axis.

The time dependence of the two-point velocity correlat
is exponential: S(t)5e2utu/t0. To obtain such a tempora
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behavior a digital filter transfer function has been realiz
~see Ref.@18# for details!. More precisely, for each time ste
the stream function of the velocity fieldu has been defined in
Fourier space as

ĉ~k,t1Dt !5aĉ~k,t !1A12a2ĥ~k,t !, ~44!

wherea5e2Dt/t0 and theĥ(k,t)’s are zero-mean comple
Gaussian random variables chosen independently for eak
@except for the Hermitian symmetryĥ(2k,t)5ĥ*( k,t)# and
at each time step. Their variance is

^uĥ~k,t !u2&5
Ê~k!

k3 . ~45!

It is easy to verify from Eqs.~44! and~45! that the following
relation holds:

^ĉ~k,t !ĉ~k8,t8!&5d~k1k8!
Ê~k!

k3 e2ut2t8u/t0. ~46!

The initial condition of the passive scalar field is chosen

u~x,0!541cos~a•x!1cos~b•x!, ~47!

with the wave numbersa5(2,0) andb5(0,2). Initial data
are thus concentrated only on the large scalesa!p0 andb
!p0 .

We know from the previous multiscale theory that t
temporal evolution ofu in the infrared limit ~t@t0 and k
!p0! is purely diffusive. It follows that

uû~k,t !u2}e22Dabkakbt ~48!

and in particular

uû~a,t !u2}e22D ia
2t, uû~b,t !u2}e22D'b2t. ~49!

The parallel and transverse effective diffusivitiesD i andD'

can thus be easily measured by performing a log-linear fi
uû(a,t)u2 and uû(b,t)u2 vs t. The temporal range of the fi
should be chosen at times large enough for the diffus
behavior~49! to take place.

In order to investigate the effect ofU on the effective
correlation time of turbulent fluctuations, we have measu
D i andD' for simulations with different values ofU andS.
The latter is the Strouhal number defined asS5u0t0p0/2p
[t0 /t0 , where t052p/u0p0 is the turnover time of the
flow.

In Fig. 1 we show the eddy-diffusivity map as a functio
of U/u0 and S. Two remarks are in order. First, we no
@principally from Fig. 1~a!# that points belonging to the re
gions of theS-U/u0 plane with largeS and nonzeroU are
equivalent~in the sense that they have the same eddy di
sivity! to points withU850 andS8 always smaller thanS,
namely,

D~U,S!5D~0,Seff! with Seff,S, ~50!

which is a clear signature of the decorrelating effect due
the sweeping. Sinceu0 and p0 are kept fixed, the previou
inequality is indeed equivalent toteff,t0.
d

f

e

d

-

o

The second remark is that whenU/u0*2 even points
with S55 are mapped to regions withSeff,1. It follows that
either moderate or strong sweeping makes the calculatio
the diffusivities essentially equivalent to the analysis of
flow with smallS. This is the realm of application of pertur
bative techniques. This remark will be exploited in the ne
section to derive explicit formulas for the effective diffusiv
ties in the presence of moderate or strong mean flows.

IV. EXPLICIT EXPRESSIONS FOR EDDY DIFFUSIVITIES

As discussed in more detail in the Appendix, when t
correlation time of turbulence is small, the calculation
eddy diffusivities can be tackled self-consistently. In partic
lar, the following integral equation is derived:

Dab5dabD01
1

~2p!d E dq
~q2dab2qaqb! f ~q!

1/t01 iq•U1Drsqrqs
,

~51!

where the autocorrelation functionS(t) is given by Eq.~30!.
If the mean velocity field component is zero and ifDab is
isotropic,Dab5Ddab , Eq. ~51! reduces to

FIG. 1. Contour map for the diagonal~adimensional! compo-
nents of the turbulent diffusivity as a function of the ratioU/u0 and
of the Strouhal number.~a! D i/2pu0 and ~b! D'/2pu0 . The con-
tour interval is 0.2331023.
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D5D01
1

d E
0

`

dq
Ê~q!

1/t01Dq2 , ~52!

where

Ê~q!5
f ~q!qd11

@~42d!p2d23#
, d52,3 ~53!

is the energy spectrum. SinceÊ(q)>0, the method ofchain
fractionsis applicable to Eq.~52! for finding D. Given a first
guessD (0) for D, the next approximation

D ~1!5dabD01
1

d E
0

`

dq
Ê~q!

1/t01D ~0!q2 ~54!

is smaller than the true valueD. The subsequent iteration
result in a convergent series of approximations forD. The
true D lies, in all cases, between the values of two sub
quent iterations. We remark that whent0!1 ~i.e., S→0!,
relation ~52! gives immediately

D5D01
1

d
u0

2t0 , ~55!

the well-known result corresponding to turbulence with
short memory~i.e., d-correlated in time!.

WhenS&1, successive iterations of Eq.~52! starting from
the first guess~55! result in a rapidly convergent series
approximations for the true valueD. As an example, in Fig.
2 the convergence profileD (n) is shown as obtained by pe
forming successive iterations of Eq.~52! in the two-
dimensional case withS50.2 ~dashed curve!. As we can see
two iterations are sufficient for essentially perfect agreem

FIG. 2. Convergence profileD (n)/2pu0 of the ~adimensional!
turbulent diffusivity for S50.2 ~dashed curve! and S550 ~solid
curve!. Iterations have been performed on Eq.~52! in the two-
dimensional case with the spectrum~43!. The first guess field is
D (0)5D01

1
2 u0

2t0 .
-

t.

For turbulent spectra with large values of the parameteS,
convergence of successive iterations is achieved m
slowly, as should be expected. This aspect is detectable
observing Fig. 2~solid curve! relative to the convergenc
profile D (n) for S550.

The number of iterations to achieve convergence is t
directly proportional toS. The remark we shall exploit is tha
a similar situation occurs in the presence of strong sweep
but whereS is replaced bySeff , as stressed by observing Fi
3, in which the convergence profilesD i

(n) ~solid curve! and
D'

(n) ~dashed curve! for U/u052.0 are shown. Iterations
have been performed in the two-dimensional case star
from the first guessD'

(0)5D i
(0)5D01 1

2 u0
2t0 on the self-

consistent equation~51! with energy spectrum given by Eq
~43!. The Strouhal number isS550.

The convergence profiles can be compared with that
ready shown in Fig. 2 relative to the sameS but with U
50. As one can see, convergence forU/u052 is achieved
much faster than in the case withU50. The same conclusion
holds in general when the sweeping is strong enough.

Now we can exploit the above remarks concerning
effect of strong sweeping on the convergence profiles of
bulent diffusivities in order to obtain their approximate e
plicit expressions valid for allS’s. For such a purpose, let u
insert into Eq. ~51! the first guess D i

(0)5D'
(0)5D0

1(1/d)u0
2teff

` , with teff
` suggested by Eq.~31!: teff

`

5(1/k2)/t0U2. Due to the isotropy of the first guess he
considered, the angular integration in Eq.~51! is easily per-
formed. More accurate expressions for the turbulent dif
sivities are thus found for the two-dimensional case

FIG. 3. Convergence profile for the diagonal~adimensional!
componentD i

(n)/2pu0 ~solid curve! andD'
(n)/2pu0 ~dashed curve!

of the turbulent diffusivity. Iterations have been performed on E
~51! in the two-dimensional case with the spectrum~43!, U/u0

52.0, and S550. First guess is given byD i
(0)5D'

(0)5D0

1
1
2 u0

2t0 .
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D i5D01E
0

`

dp
Ê~p!

p2U2 ~Af 21p2U22 f !, ~56!

D'5D01E
0

`

dp
Ê~p!

p2U2 S f 2
f 2

Af 21p2U2D ~57!

and for the three-dimensional case

D i5D01
1

4 E
0

`

dp
Ê~p!

pU H 2F11S f

pUD 2GarctanS pU

f D
22

f

pUJ , ~58!

D'5D01
1

4 E
0

`

dp
Ê~p!

pU H F12S f

pUD 2GarctanS pU

f D
1

f

pUJ , ~59!

where

f 5
1

t0
1S D01

1

d
u0

2teff
` D p2 with teff

` 5
1/k2

t0
S 1

U D 2

.

~60!

The above expressions for the turbulent diffusivities in
two-dimensional case have been compared with meas
valuesD i

FP andD'
FP obtained by performing direct numerica

simulations~see Sec. III! of the original Fokker-Planck equa
tion ~1!.

Figure 4 shows the behavior of the errorDD ~percentage!
defined asDD5(D i2D i

FP)/D i
FP versus the ratioU/u0 for

FIG. 4. Behavior of the percentage errorDD ~see the text! ver-
sus the ratioU/u0 , for different values of the Strouhal num
ber: ~a! S50.5, ~b! S51.0, ~c! S55.0, and~d! S510.0. Solid
curves correspond toDD obtained withD i given by Eq. ~56!.
Dashed curves are relative to the first guess.
e
ed

different values of the Strouhal numberS: ~a! S50.5, ~b!
S51.0, ~c! S55.0, and~d! S510.0. Solid curves correspon
to DD obtained withD i given by Eq.~56!. Dashed curves
are relative toDD calculated with the first guessD i

(0) . Fig-
ure 5 is the same as Fig. 4, but it is relative to the transve
componentD' .

From such figures several observations are worth m
tioning. In all cases reported in the figures it is evident th
approximate explicit expressions work better and better
the ratioU/u0 increases. ForU/u0*1 errors between turbu
lent diffusivity values predicted by analytic expressions a
those obtained by direct numerical simulations of t
Fokker-Planck equation are always smaller than 10%. Er
become smaller than 5% forU/u0*3. The quality of the
approximation reduces whenU/u0&1, in agreement with the
asymptotic character of the first guess employed~i.e., the
first guess corresponding to strong sweeping regimes!.

Furthermore, we notice that the agreement between va
from our formulas and the measured values is better for
transverse componentsD' than for the parallel component
D i . This is not surprising: The behavior ofD i for large U
goes to zero as 1/U, while the first guess forD i employed
here goes to zero as 1/U2, which is the behavior ofD' for
strong sweeping.

Our explicit expressions for effective diffusivities can b
generalized to the case whenU is not a pure streaming bu
varies on large scales@in the multiscale formalismU(X,T)#.
Equation~40! suggests thatU can be replaced byA^U2& in
explicit formulas. By performing such a substitution, effe
tive diffusivities given by explicit expressions must be se
as relative to the dynamics of the scalar field on a scale m
larger than those on whichU varies.

CONCLUSION

The effective correlation times in turbulent transport o
passive scalar field in the presence of a large-scale flow h

FIG. 5. Same as in Fig. 4, butD i is replaced byD' in the
definition of DD.
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5508 56A. MAZZINO
been investigated. Approximate explicit expressions for
effective diffusivities have been proposed. In the present
per, the advecting velocity field is made by a constant~or
varying on large scales! part and a fluctuating random par
with given statistical properties. By using multiscale me
ods, we have performed a generalization of the theory in R
@9# ~see also Ref.@7#! showing that, in the presence of
large-scale velocity field and with scale separation, the lar
scale scalar field dynamics is governed by an effec
Fokker-Planck equation characterized by an effective tur
lent diffusivity, which is actually a second-order tensor fie
~smoothly dependent on space and temporal coordinate!. The
calculation of the latter is reduced to the solution of o
auxiliary equation. The effective diffusivity is always larg
than the molecular one, i.e., incompressible flow enhan
diffusion, as expected.

The dependence of the effective diffusivities on the lar
scale velocity field has been investigated both analytic
and by numerical simulations performed on the origin
Fokker-Planck equation governing the scalar dynamics
full scales. With respect to the analytical analysis, the res
of the theory carried out via the multiple scale method ha
been applied to the simple case of parallel flow in the pr
ence of a large-scale advecting velocity field. In such a c
we have obtained the solution of the auxiliary equation a
lytically and exact expressions for the effective correlat
time of turbulence have been found. The effect of the lar
scale velocity field has been investigated. We have focu
our attention on the cases of strong and weak sweeping
spectively. For strong sweeping decorrelation always occ
independently of the form of the autocorrelation function
turbulence: The effective correlation time tends to zero wh
the sweeping becomes strong. The same result holds for
eral flows. For weak sweeping, the correlation time can
either enhanced or depleted.

In order to investigate the reduction of the correlati
time for more general flows and moderate sweeping am
tudes, we have performed direct numerical simulations of
original Fokker-Planck equation governing the scalar
namics at full scales. Results have confirmed those obta
with the theoretical analysis performed on parallel flows.

The decorrelating effect associated with the strong swe
ing has been exploited to derive explicit approximate form
las for the effective diffusivities. The basic idea consists
observing that thedirect interaction approximationfor the
scalar problem works better and better as the correlation
of the advecting flow reduces and it becomes exact for flo
d-correlated in time. This allowed us to derive explicit fo
mulas for the effective diffusivities, which were then com
pared with numerical simulations of the original passive s
lar equation. Effective diffusivity values obtained with o
formulas are in good agreement with the measured value
all cases considered, the error is always smaller than 10%
moderate sweeping. It becomes smaller than 5% for str
sweeping.
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APPENDIX: SELF-CONSISTENCY EQUATION FOR
EFFECTIVE DIFFUSIVITIES

We shall give details of the derivation of theself-
consistentequation~51! for finding the effective diffusivities
in the presence of a mean flow. The passive scalar fi
u(x,t) obeys the equation

] tu~x,t !1~U1u!•“u~x,t !5D0Du~x,t !, ~A1!

whereU is constant and the fieldu is incompressible (“•u
50), homogeneous, stationary, and has zero-average v
^u&50. The only hypothesis we shall make on the veloc
field u is that it ensures a diffusive transport for sufficient
large times. As shown in Refs.@19, 20#, a sufficient condi-
tion is that the variance of the vector potential be finite. T
is the case, for example, for usual energy spectra hav
cutoffs both at large and small scale.

Let us now derive the general equation governing the
havior of the mean scalar field̂u &. The original equation
~A1! is conveniently rewritten in the compact form

L0u5LIu, ~A2!

where

L05] t1U•“2D0D, LI52u•“. ~A3!

The field u is decomposed into its average and fluctuat
parts as

u5^u&1 ũ. ~A4!

The following equations immediately follow from Eqs.~A2!
and ~A4!:

L0^u&5^LI ũ&[S, ~A5a!

~L02LI !ũ5LI^u&2^LI ũ&. ~A5b!

HereS(x,t) plays essentially the same role as the mass
erator in quantum field theory. The solution of Eq.~A5b! can
be formally expressed in terms of the~unknown! Green’s
function G as

ũ~1!5E G~1,2!@LI~2!^u~2!&2S~2!#d2, ~A6!

where we have used a simplified notation for the space-t
variables (x1 ,t1) and the Green’s functionG satisfies the
usual equation@L0(1)2LI(1)# G(1,2)5d(122). Operat-
ing with LI(1) on Eq.~A6! and taking the average, we ob
tain the equation forS,

S~1!5E ^LI~1!G~1,2!LI~2!&^u~2!&2^LIG~1,2!&S~2!d2.

~A7!
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Equation~A7! can be recast in a more convenient form
using the Dyson equation

G~1,2!5G0~1,2!1E G0~1,3!LI~3!G~3,2!d3, ~A8!

whereG0 is the Green’s function ofL0 @i.e.,L0(1)G0(1,2)
5d(122)#. Equation~A8! is an immediate consequence
the definition of the Green’s functionsG andG0 .

Inserting Eq.~A8! into Eq. ~A7!, we finally obtain

S~x,t !5¹aF E dRE dt Dab~R,t!¹b^u~x2R;t2t!&G .
~A9!

Here we have used the convolution structure of Eq.~A7!,
which is due to homogeneity and stationarity and the Fou
transform ofDab is defined as

D̂ab~k,v!52
R̂ab~k,v!

11kakbR̂ab~k,v!
, ~A10!

with R̂ab the Fourier transform of2uaGub . Equation~A9!
gives for the evolution of the mean scalar field

L0^u&5¹aF E dRE dt Dab~R,t!¹b^u~x2R;t2t!&G .
~A11!

No approximation has been made to derive this equat
which is, however, only formal sinceD̂ab is not known.

We restrict now Eq.~A11! to analyze the transport o
scales large compared to those of the turbulent fieldu. For
these modes theD̂ab(k,v) appearing in Eq.~A11! is essen-
tially equal to its value at the origink50, v50. It follows
that the mean scalar field evolves according to

] t^u&1U•“^u&5Dab¹a¹b^u&, ~A12!

where the effective diffusivity tensor is

Dab5dabD01E dRE dt^ua~1!G~1,2!ub~2!&.

~A13!

The problem now is to determine the Green’s functi
appearing in Eq.~A13!. The DIA provides the closed qua
dratic equation

^Ĝ&~k,v!5Ĝ0~k,v!1Ĝ0~k,v!^LI^G&LÎ&~k,v!^Ĝ&~k,v!,
~A14!

with ^LI^G&LÎ& the Fourier transform of̂LI^G&LI&. A pos-
sible procedure leading to the DIA equation~A14! from the
original exact equation~A5! is the following. Adding and
subtractingLI^G& to and from Eq.~A5a! and using the defi-
nition of G, we obtain the relation
r

n,

G5^G&1E G@LI^G&2^LI G̃&#. ~A15!

Let us now treat perturbatively the second term on the rig
hand side, stop at first order, and use the resulting expres
to calculatê LIG&, which appears in the exact Dyson equ
tion

^G&5G01E G0^LIG&. ~A16!

The final result expressed in Fourier space is exactly the D
equation~A14!.

The Fourier transformĈab(k,t) of the two point correla-
tion function ^ua(1)ub(2)& for the velocities, in an incom-
pressible, homogeneous, and isotropic medium is given

Ĉab~k,t!5~dabk22kakb!g~k,t!. ~A17!

Let us consider for simplicity a separable expression
g(k,t):

g~k,t!5 f ~k!e2utu/t0,

where an exponential behavior for the time dependence
the two-point correlation function is also assumed.

After inserting the above expression forĈab(k,t) into
Eq. ~A14!, we obtain

^Ĝ&~k,v!5F Ĝ0
21~k,v!1

kakb

~2p!d E dq~q2dab2qbqa! f ~q!

3^Ĝ&~k2q,v11/t0!G21

, ~A18!

whered is the space dimension. Such an expression is c
tinued fraction type of equation with positive terms@i.e.,
q(11d) f (q) is positive since it is proportional to the energ
spectrum of the turbulent fluctuations#. Thus it can easily be
solved numerically by the method of ‘‘chain fractions’’@13#.

In the infrared limit, it is easy to verify that Eq.~A18!
becomes

^Ĝ&~k,v!5@ iv1 ik•U1Dabkakb#21, ~A19!

whereDab is given by Eq.~A13! after substitutingG with
the Fourier transform of̂Ĝ&(k,1/t0). Equation~A13! thus
becomes an equation for findingDab :

Dab5dabD01
1

~2p!d E dq
~q2dab2qaqb! f ~q!

1/t01 iq•U1Drsqrqs
.

~A20!

Such a method for findingDab is calledself-consistent@21#.
There are two steps to obtain Eq.~A20!: First, G has been
substituted bŷ G& in the exact equation~A13!; second the
infrared approximation for̂ G& has been taken. It is quite
evident that the latter approximation works better and be
as the spectrum of turbulence decreases quickly.
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